346 lines
9.4 KiB
JavaScript
346 lines
9.4 KiB
JavaScript
|
import { create as v2Create, distSquare as v2DistSquare } from './vector.js';
|
||
|
var mathPow = Math.pow;
|
||
|
var mathSqrt = Math.sqrt;
|
||
|
var EPSILON = 1e-8;
|
||
|
var EPSILON_NUMERIC = 1e-4;
|
||
|
var THREE_SQRT = mathSqrt(3);
|
||
|
var ONE_THIRD = 1 / 3;
|
||
|
var _v0 = v2Create();
|
||
|
var _v1 = v2Create();
|
||
|
var _v2 = v2Create();
|
||
|
function isAroundZero(val) {
|
||
|
return val > -EPSILON && val < EPSILON;
|
||
|
}
|
||
|
function isNotAroundZero(val) {
|
||
|
return val > EPSILON || val < -EPSILON;
|
||
|
}
|
||
|
export function cubicAt(p0, p1, p2, p3, t) {
|
||
|
var onet = 1 - t;
|
||
|
return onet * onet * (onet * p0 + 3 * t * p1)
|
||
|
+ t * t * (t * p3 + 3 * onet * p2);
|
||
|
}
|
||
|
export function cubicDerivativeAt(p0, p1, p2, p3, t) {
|
||
|
var onet = 1 - t;
|
||
|
return 3 * (((p1 - p0) * onet + 2 * (p2 - p1) * t) * onet
|
||
|
+ (p3 - p2) * t * t);
|
||
|
}
|
||
|
export function cubicRootAt(p0, p1, p2, p3, val, roots) {
|
||
|
var a = p3 + 3 * (p1 - p2) - p0;
|
||
|
var b = 3 * (p2 - p1 * 2 + p0);
|
||
|
var c = 3 * (p1 - p0);
|
||
|
var d = p0 - val;
|
||
|
var A = b * b - 3 * a * c;
|
||
|
var B = b * c - 9 * a * d;
|
||
|
var C = c * c - 3 * b * d;
|
||
|
var n = 0;
|
||
|
if (isAroundZero(A) && isAroundZero(B)) {
|
||
|
if (isAroundZero(b)) {
|
||
|
roots[0] = 0;
|
||
|
}
|
||
|
else {
|
||
|
var t1 = -c / b;
|
||
|
if (t1 >= 0 && t1 <= 1) {
|
||
|
roots[n++] = t1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
var disc = B * B - 4 * A * C;
|
||
|
if (isAroundZero(disc)) {
|
||
|
var K = B / A;
|
||
|
var t1 = -b / a + K;
|
||
|
var t2 = -K / 2;
|
||
|
if (t1 >= 0 && t1 <= 1) {
|
||
|
roots[n++] = t1;
|
||
|
}
|
||
|
if (t2 >= 0 && t2 <= 1) {
|
||
|
roots[n++] = t2;
|
||
|
}
|
||
|
}
|
||
|
else if (disc > 0) {
|
||
|
var discSqrt = mathSqrt(disc);
|
||
|
var Y1 = A * b + 1.5 * a * (-B + discSqrt);
|
||
|
var Y2 = A * b + 1.5 * a * (-B - discSqrt);
|
||
|
if (Y1 < 0) {
|
||
|
Y1 = -mathPow(-Y1, ONE_THIRD);
|
||
|
}
|
||
|
else {
|
||
|
Y1 = mathPow(Y1, ONE_THIRD);
|
||
|
}
|
||
|
if (Y2 < 0) {
|
||
|
Y2 = -mathPow(-Y2, ONE_THIRD);
|
||
|
}
|
||
|
else {
|
||
|
Y2 = mathPow(Y2, ONE_THIRD);
|
||
|
}
|
||
|
var t1 = (-b - (Y1 + Y2)) / (3 * a);
|
||
|
if (t1 >= 0 && t1 <= 1) {
|
||
|
roots[n++] = t1;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
var T = (2 * A * b - 3 * a * B) / (2 * mathSqrt(A * A * A));
|
||
|
var theta = Math.acos(T) / 3;
|
||
|
var ASqrt = mathSqrt(A);
|
||
|
var tmp = Math.cos(theta);
|
||
|
var t1 = (-b - 2 * ASqrt * tmp) / (3 * a);
|
||
|
var t2 = (-b + ASqrt * (tmp + THREE_SQRT * Math.sin(theta))) / (3 * a);
|
||
|
var t3 = (-b + ASqrt * (tmp - THREE_SQRT * Math.sin(theta))) / (3 * a);
|
||
|
if (t1 >= 0 && t1 <= 1) {
|
||
|
roots[n++] = t1;
|
||
|
}
|
||
|
if (t2 >= 0 && t2 <= 1) {
|
||
|
roots[n++] = t2;
|
||
|
}
|
||
|
if (t3 >= 0 && t3 <= 1) {
|
||
|
roots[n++] = t3;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
export function cubicExtrema(p0, p1, p2, p3, extrema) {
|
||
|
var b = 6 * p2 - 12 * p1 + 6 * p0;
|
||
|
var a = 9 * p1 + 3 * p3 - 3 * p0 - 9 * p2;
|
||
|
var c = 3 * p1 - 3 * p0;
|
||
|
var n = 0;
|
||
|
if (isAroundZero(a)) {
|
||
|
if (isNotAroundZero(b)) {
|
||
|
var t1 = -c / b;
|
||
|
if (t1 >= 0 && t1 <= 1) {
|
||
|
extrema[n++] = t1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
var disc = b * b - 4 * a * c;
|
||
|
if (isAroundZero(disc)) {
|
||
|
extrema[0] = -b / (2 * a);
|
||
|
}
|
||
|
else if (disc > 0) {
|
||
|
var discSqrt = mathSqrt(disc);
|
||
|
var t1 = (-b + discSqrt) / (2 * a);
|
||
|
var t2 = (-b - discSqrt) / (2 * a);
|
||
|
if (t1 >= 0 && t1 <= 1) {
|
||
|
extrema[n++] = t1;
|
||
|
}
|
||
|
if (t2 >= 0 && t2 <= 1) {
|
||
|
extrema[n++] = t2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
export function cubicSubdivide(p0, p1, p2, p3, t, out) {
|
||
|
var p01 = (p1 - p0) * t + p0;
|
||
|
var p12 = (p2 - p1) * t + p1;
|
||
|
var p23 = (p3 - p2) * t + p2;
|
||
|
var p012 = (p12 - p01) * t + p01;
|
||
|
var p123 = (p23 - p12) * t + p12;
|
||
|
var p0123 = (p123 - p012) * t + p012;
|
||
|
out[0] = p0;
|
||
|
out[1] = p01;
|
||
|
out[2] = p012;
|
||
|
out[3] = p0123;
|
||
|
out[4] = p0123;
|
||
|
out[5] = p123;
|
||
|
out[6] = p23;
|
||
|
out[7] = p3;
|
||
|
}
|
||
|
export function cubicProjectPoint(x0, y0, x1, y1, x2, y2, x3, y3, x, y, out) {
|
||
|
var t;
|
||
|
var interval = 0.005;
|
||
|
var d = Infinity;
|
||
|
var prev;
|
||
|
var next;
|
||
|
var d1;
|
||
|
var d2;
|
||
|
_v0[0] = x;
|
||
|
_v0[1] = y;
|
||
|
for (var _t = 0; _t < 1; _t += 0.05) {
|
||
|
_v1[0] = cubicAt(x0, x1, x2, x3, _t);
|
||
|
_v1[1] = cubicAt(y0, y1, y2, y3, _t);
|
||
|
d1 = v2DistSquare(_v0, _v1);
|
||
|
if (d1 < d) {
|
||
|
t = _t;
|
||
|
d = d1;
|
||
|
}
|
||
|
}
|
||
|
d = Infinity;
|
||
|
for (var i = 0; i < 32; i++) {
|
||
|
if (interval < EPSILON_NUMERIC) {
|
||
|
break;
|
||
|
}
|
||
|
prev = t - interval;
|
||
|
next = t + interval;
|
||
|
_v1[0] = cubicAt(x0, x1, x2, x3, prev);
|
||
|
_v1[1] = cubicAt(y0, y1, y2, y3, prev);
|
||
|
d1 = v2DistSquare(_v1, _v0);
|
||
|
if (prev >= 0 && d1 < d) {
|
||
|
t = prev;
|
||
|
d = d1;
|
||
|
}
|
||
|
else {
|
||
|
_v2[0] = cubicAt(x0, x1, x2, x3, next);
|
||
|
_v2[1] = cubicAt(y0, y1, y2, y3, next);
|
||
|
d2 = v2DistSquare(_v2, _v0);
|
||
|
if (next <= 1 && d2 < d) {
|
||
|
t = next;
|
||
|
d = d2;
|
||
|
}
|
||
|
else {
|
||
|
interval *= 0.5;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (out) {
|
||
|
out[0] = cubicAt(x0, x1, x2, x3, t);
|
||
|
out[1] = cubicAt(y0, y1, y2, y3, t);
|
||
|
}
|
||
|
return mathSqrt(d);
|
||
|
}
|
||
|
export function cubicLength(x0, y0, x1, y1, x2, y2, x3, y3, iteration) {
|
||
|
var px = x0;
|
||
|
var py = y0;
|
||
|
var d = 0;
|
||
|
var step = 1 / iteration;
|
||
|
for (var i = 1; i <= iteration; i++) {
|
||
|
var t = i * step;
|
||
|
var x = cubicAt(x0, x1, x2, x3, t);
|
||
|
var y = cubicAt(y0, y1, y2, y3, t);
|
||
|
var dx = x - px;
|
||
|
var dy = y - py;
|
||
|
d += Math.sqrt(dx * dx + dy * dy);
|
||
|
px = x;
|
||
|
py = y;
|
||
|
}
|
||
|
return d;
|
||
|
}
|
||
|
export function quadraticAt(p0, p1, p2, t) {
|
||
|
var onet = 1 - t;
|
||
|
return onet * (onet * p0 + 2 * t * p1) + t * t * p2;
|
||
|
}
|
||
|
export function quadraticDerivativeAt(p0, p1, p2, t) {
|
||
|
return 2 * ((1 - t) * (p1 - p0) + t * (p2 - p1));
|
||
|
}
|
||
|
export function quadraticRootAt(p0, p1, p2, val, roots) {
|
||
|
var a = p0 - 2 * p1 + p2;
|
||
|
var b = 2 * (p1 - p0);
|
||
|
var c = p0 - val;
|
||
|
var n = 0;
|
||
|
if (isAroundZero(a)) {
|
||
|
if (isNotAroundZero(b)) {
|
||
|
var t1 = -c / b;
|
||
|
if (t1 >= 0 && t1 <= 1) {
|
||
|
roots[n++] = t1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
var disc = b * b - 4 * a * c;
|
||
|
if (isAroundZero(disc)) {
|
||
|
var t1 = -b / (2 * a);
|
||
|
if (t1 >= 0 && t1 <= 1) {
|
||
|
roots[n++] = t1;
|
||
|
}
|
||
|
}
|
||
|
else if (disc > 0) {
|
||
|
var discSqrt = mathSqrt(disc);
|
||
|
var t1 = (-b + discSqrt) / (2 * a);
|
||
|
var t2 = (-b - discSqrt) / (2 * a);
|
||
|
if (t1 >= 0 && t1 <= 1) {
|
||
|
roots[n++] = t1;
|
||
|
}
|
||
|
if (t2 >= 0 && t2 <= 1) {
|
||
|
roots[n++] = t2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
export function quadraticExtremum(p0, p1, p2) {
|
||
|
var divider = p0 + p2 - 2 * p1;
|
||
|
if (divider === 0) {
|
||
|
return 0.5;
|
||
|
}
|
||
|
else {
|
||
|
return (p0 - p1) / divider;
|
||
|
}
|
||
|
}
|
||
|
export function quadraticSubdivide(p0, p1, p2, t, out) {
|
||
|
var p01 = (p1 - p0) * t + p0;
|
||
|
var p12 = (p2 - p1) * t + p1;
|
||
|
var p012 = (p12 - p01) * t + p01;
|
||
|
out[0] = p0;
|
||
|
out[1] = p01;
|
||
|
out[2] = p012;
|
||
|
out[3] = p012;
|
||
|
out[4] = p12;
|
||
|
out[5] = p2;
|
||
|
}
|
||
|
export function quadraticProjectPoint(x0, y0, x1, y1, x2, y2, x, y, out) {
|
||
|
var t;
|
||
|
var interval = 0.005;
|
||
|
var d = Infinity;
|
||
|
_v0[0] = x;
|
||
|
_v0[1] = y;
|
||
|
for (var _t = 0; _t < 1; _t += 0.05) {
|
||
|
_v1[0] = quadraticAt(x0, x1, x2, _t);
|
||
|
_v1[1] = quadraticAt(y0, y1, y2, _t);
|
||
|
var d1 = v2DistSquare(_v0, _v1);
|
||
|
if (d1 < d) {
|
||
|
t = _t;
|
||
|
d = d1;
|
||
|
}
|
||
|
}
|
||
|
d = Infinity;
|
||
|
for (var i = 0; i < 32; i++) {
|
||
|
if (interval < EPSILON_NUMERIC) {
|
||
|
break;
|
||
|
}
|
||
|
var prev = t - interval;
|
||
|
var next = t + interval;
|
||
|
_v1[0] = quadraticAt(x0, x1, x2, prev);
|
||
|
_v1[1] = quadraticAt(y0, y1, y2, prev);
|
||
|
var d1 = v2DistSquare(_v1, _v0);
|
||
|
if (prev >= 0 && d1 < d) {
|
||
|
t = prev;
|
||
|
d = d1;
|
||
|
}
|
||
|
else {
|
||
|
_v2[0] = quadraticAt(x0, x1, x2, next);
|
||
|
_v2[1] = quadraticAt(y0, y1, y2, next);
|
||
|
var d2 = v2DistSquare(_v2, _v0);
|
||
|
if (next <= 1 && d2 < d) {
|
||
|
t = next;
|
||
|
d = d2;
|
||
|
}
|
||
|
else {
|
||
|
interval *= 0.5;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (out) {
|
||
|
out[0] = quadraticAt(x0, x1, x2, t);
|
||
|
out[1] = quadraticAt(y0, y1, y2, t);
|
||
|
}
|
||
|
return mathSqrt(d);
|
||
|
}
|
||
|
export function quadraticLength(x0, y0, x1, y1, x2, y2, iteration) {
|
||
|
var px = x0;
|
||
|
var py = y0;
|
||
|
var d = 0;
|
||
|
var step = 1 / iteration;
|
||
|
for (var i = 1; i <= iteration; i++) {
|
||
|
var t = i * step;
|
||
|
var x = quadraticAt(x0, x1, x2, t);
|
||
|
var y = quadraticAt(y0, y1, y2, t);
|
||
|
var dx = x - px;
|
||
|
var dy = y - py;
|
||
|
d += Math.sqrt(dx * dx + dy * dy);
|
||
|
px = x;
|
||
|
py = y;
|
||
|
}
|
||
|
return d;
|
||
|
}
|