1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Aileen Nicholas edited this page 2025-02-07 19:42:56 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion specifications to develop, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes reinforcement learning to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key distinguishing function is its reinforcement knowing (RL) action, which was utilized to fine-tune the model's actions beyond the standard pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adapt better to user feedback and objectives, eventually enhancing both importance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, suggesting it's equipped to break down complicated questions and reason through them in a detailed way. This guided thinking procedure allows the model to produce more accurate, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT capabilities, aiming to produce structured reactions while concentrating on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has actually captured the market's attention as a versatile text-generation model that can be integrated into different workflows such as representatives, sensible reasoning and data analysis tasks.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion specifications, enabling efficient inference by to the most relevant professional "clusters." This method enables the model to focus on various issue domains while maintaining total effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 design to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more effective designs to simulate the habits and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as a teacher model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, higgledy-piggledy.xyz we suggest deploying this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and assess models against key safety criteria. At the time of writing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit increase, create a limit increase request and connect to your account group.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For instructions, see Establish permissions to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, avoid damaging content, and assess designs against crucial security requirements. You can execute security procedures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and select the DeepSeek-R1 design.

The model detail page offers important details about the design's abilities, prices structure, and execution standards. You can discover detailed use guidelines, consisting of sample API calls and code bits for integration. The design supports different text generation jobs, including material production, code generation, and question answering, using its reinforcement finding out optimization and CoT thinking capabilities. The page likewise includes implementation alternatives and licensing details to assist you get begun with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, choose Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of instances, go into a number of circumstances (between 1-100). 6. For Instance type, pick your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can configure innovative security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role approvals, and file encryption settings. For many utilize cases, the default settings will work well. However, for production implementations, you might wish to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the implementation is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive user interface where you can experiment with different prompts and change design criteria like temperature level and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal outcomes. For instance, content for inference.

This is an excellent way to check out the design's thinking and text generation abilities before incorporating it into your applications. The play ground provides immediate feedback, helping you comprehend how the model reacts to various inputs and letting you tweak your triggers for ideal outcomes.

You can rapidly evaluate the model in the play area through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, sets up inference criteria, and sends a demand to generate text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart offers 2 hassle-free methods: utilizing the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you pick the approach that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design internet browser displays available models, with details like the supplier name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card reveals crucial details, consisting of:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if suitable), showing that this model can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the model

    5. Choose the model card to view the model details page.

    The model details page includes the following details:

    - The model name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage standards

    Before you release the model, it's recommended to examine the design details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the automatically created name or create a custom-made one.
  1. For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the variety of circumstances (default: 1). Selecting suitable instance types and counts is crucial for cost and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we highly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the model.

    The implementation process can take several minutes to complete.

    When implementation is complete, your endpoint status will alter to InService. At this moment, the model is ready to accept reasoning requests through the endpoint. You can keep track of the implementation progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the deployment is total, you can invoke the design utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as revealed in the following code:

    Clean up

    To prevent undesirable charges, complete the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the design using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace deployments.
  5. In the Managed releases area, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative services utilizing AWS services and sped up calculate. Currently, he is focused on developing methods for fine-tuning and optimizing the inference performance of large language designs. In his totally free time, Vivek delights in hiking, watching movies, and trying various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing solutions that assist customers accelerate their AI journey and unlock organization value.